首页> 外文OA文献 >Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces
【2h】

Scalable and privacy-respectful interactive discovery of place semantics from human mobility traces

机译:可扩展性和尊重隐私的交互式信息从人类移动性痕迹中发现地点语义

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mobility diaries of a large number of people are needed for assessing transportation infrastructure and for spatial development planning. Acquisition of personal mobility diaries through population surveys is a costly and error-prone endeavour. We examine an alternative approach to obtaining similar information from episodic digital traces of people’s presence in various locations, which appear when people use their mobile devices for making phone calls, accessing the internet, or posting georeferenced contents (texts, photos, or videos) in social media. Having episodic traces of a person over a long time period, it is possible to detect significant (repeatedly visited) personal places and identify them as home, work, or place of social activities based on temporal patterns of a person’s presence in these places. Such analysis, however, can lead to compromising personal privacy. We have investigated the feasibility of deriving place meanings and reconstructing personal mobility diaries while preserving the privacy of individuals whose data are analysed. We have devised a visual analytics approach and a set of supporting tools making such privacy-preserving analysis possible. The approach was tested in two case studies with publicly available data: simulated tracks from the VAST Challenge 2014 and real traces built from georeferenced Twitter posts.
机译:需要大量人员的流动日记来评估交通基础设施和空间发展规划。通过人口调查获取个人流动日记是一项昂贵且容易出错的工作。我们研究了一种可替代的方法,可从人们在各地的存在的情景数字轨迹中获得类似信息,当人们使用移动设备拨打电话,访问互联网或在其中发布地理参考内容(文本,照片或视频)时,该方法就会出现社交媒体。在很长一段时间内都有人的情景痕迹,可以检测到重要的(重复访问的)个人场所,并根据一个人在这些地方的存在时间模式,将其识别为家庭,工作或社交活动场所。但是,此类分析可能会损害个人隐私。我们研究了在保留数据被分析的个人隐私的同时,推导场所意义和重建个人流动日记的可行性。我们设计了一种可视化分析方法和一组支持工具,使这种隐私保护分析成为可能。该方法已在两个案例研究中使用公开数据进行了测试:来自VAST Challenge 2014的模拟轨迹和根据地理参考的Twitter帖子构建的真实轨迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号